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Second-Order RLC Transient (Step Response) 
 The Switch “S” is closed at t=0 
 Applying KVL will produce the following 

Integro-Differential equation: 

 Differentiating, we obtain 

This second order, linear differential equation is of the 
homogeneous type with a particular solution of zero. 

 The complementary function can be one of three different types according to 
the roots of the auxiliary equation which depends upon the relative 
magnitudes of R, L and C. 
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Transient (Step Response) RLCOrder -Second 
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We can Rewrite the auxiliary equation as: 

 The roots of the  equation (or natural frequencies): 









LCL
R

L
Rm

LCL
R

L
Rm

1
42

2

1
42

2

2

2

2

1

4 



Case 1: Overdamped,  
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Natural response is the sum of two decaying exponentials: 
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Transient (Step Response) RLCOrder -Second 
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Case 2: Critically damped,  
equal. and real are  , 21 mm
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6 Transient (Step Response) RLCOrder -Second 
Case 3: Underdamped,  

conjugate. andcomplex  are  , 21 mm

Natural response is an exponentially damped oscillatory response: 
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tri

t t

Critically 
damped 

Overdamped Underdamped 
(ringing) 

Envelope 

tri

 The current in all cases contains the exponential decaying factor (damping 
factor)  assuring that the final value is zero 

 In other words, assuring that the complementary function decays in a 
relatively short time.  
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Example 
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Example 
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A series RLC circuit with R = 3000 ohms, L = 10 h and C = 200 µf has a constant voltage V = 
50 volts applied at t = 0. Find the current transient and the maximum value of the current if 
the capacitor has no initial charge. 



Example 
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Transient Analysis using Laplace Transform  

 Solving differential equations  
 Circuit analysis (Transient and general circuit 

analysis) 
 Digital Signal processing  in Communications and  
 Digital Control 
 

 Laplace transform is considered one of the most important tools in Electrical 
Engineering 

 It can be used for: 
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Transient Analysis using Laplace Transform  
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 The switch “S” is closed at t = 0 to allow the step voltage to excite the circuit 
 Apply KVL to the circuit in figure: 

Response)-Transient (Step RLOrder -First 
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Apply Laplace Transform on both sides 

i(0) = 0   >> initial value of the current at t = 0 
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 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  
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First-Order RL Transient (Step-Response) 

 Use the partial fraction technique  
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The same as last lecture 17 



First-Order RC Transient (Step-Response) 
o Assume the switch S is closed at t = 0 
o Apply  KVL to the series RC circuit shown: 
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 Apply Laplace Transform on both sides 

Vc(0) = 0   >> initial value of the voltage at t = 0 
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 Apply the inverse Laplace Transform technique to get the expression of 
the current i(t)  
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